Efficient Truncated Statistics with Unknown Truncation

Vasilis Kontonis (UW-Madison)

Christos Tzamos (UW-Madison)

Manolis Zambetakis (MIT)

We want to estimate the mean of a population.

But we're given only data from a **subset** of space.

• Poincare's baker was advertising his loaves to be 1Kg.

Poincare's Baker

- Poincare's baker was advertising his loaves to be 1Kg.
- Poincare weighted the bread he bought.

Poincare's Baker

- Poincare's baker was advertising his loaves to be 1Kg.
- Poincare weighted the bread he bought.
- Average weight was 950 grams!

• After another year of bread data...

Next Year

- After another year of bread data...
- All Poincare's loaves were above 1 Kg...

Next Year

- After another year of bread data...
- All Poincare's loaves were above 1 Kg...
- But Poincare complained again! Average weight was still 950 grams!

Next Year

- After another year of bread data...
- All Poincare's loaves were above 1 Kg...
- But Poincare complained again! Average weight was still 950 grams!

$$\mathcal{N}(\mu, \Sigma, S; x) = \frac{\mathbf{1}_{\mathcal{S}}(x)}{\alpha} \mathcal{N}(\mu, \Sigma; x),$$

$$\mathcal{N}(\mu, \Sigma, S; x) = \frac{\mathbf{1}_{S}(x)}{\alpha} \mathcal{N}(\mu, \Sigma; x),$$

$$\boldsymbol{\alpha} = \int \mathbf{1}_{\mathcal{S}}(\boldsymbol{x}) \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma};\boldsymbol{x}) d\boldsymbol{x}$$

We assume that the set S has (Gaussian) mass α at least 1%.

$$\mathcal{N}(\mu, \Sigma, S; x) = \frac{\mathbf{1}_{S}(x)}{\alpha} \mathcal{N}(\mu, \Sigma; x),$$

$$\boldsymbol{\alpha} = \int \mathbf{1}_{\mathcal{S}}(\boldsymbol{x}) \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma};\boldsymbol{x}) d\boldsymbol{x}$$

We assume that the set S has (Gaussian) mass α at least 1%.

Estimation Problem

• Data $x_i \sim \mathcal{N}(\mu, \Sigma, S)$

$$\mathcal{N}(\mu, \Sigma, S; x) = \frac{\mathbf{1}_{S}(x)}{\alpha} \mathcal{N}(\mu, \Sigma; x),$$

$$\boldsymbol{\alpha} = \int \mathbf{1}_{\mathcal{S}}(\boldsymbol{x}) \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma};\boldsymbol{x}) d\boldsymbol{x}$$

We assume that the set S has (Gaussian) mass α at least 1%.

Estimation Problem

- Data $x_i \sim \mathcal{N}(\mu, \Sigma, S)$
- Find $\widetilde{\mu}, \widetilde{\Sigma}$ such that

$$d_{\mathrm{tv}}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widetilde{\mu}, \widetilde{\Sigma})) \leq \varepsilon$$

• Has long history in statistics that dates back to Galton and Pearson.

• Has long history in statistics that dates back to Galton and Pearson.

• Has long history in statistics that dates back to Galton and Pearson.

• simple truncation sets are considered: left or box truncation etc.

Daskalakis, Gouleakis, Tzamos, Zambetakis, FOCS 2018.

- Assume that the set S is known. Membership access to the set.
- $\widetilde{O}(d^2/\varepsilon^2)$ samples suffice to learn the parameters.

Daskalakis, Gouleakis, Tzamos, Zambetakis, FOCS 2018.

- Assume that the set S is known. Membership access to the set.
- $\widetilde{O}(d^2/\varepsilon^2)$ samples suffice to learn the parameters.
- *S* unknown?

They construct a very complicated truncation set that makes it information theoretically impossible.

Daskalakis, Gouleakis, Tzamos, Zambetakis, FOCS 2018.

- Assume that the set S is known. Membership access to the set.
- $\widetilde{O}(d^2/\varepsilon^2)$ samples suffice to learn the parameters.
- *S* unknown?

They construct a very complicated truncation set that makes it information theoretically impossible.

Main Open Problem

• Truncation S is unknown and of bounded "complexity".

Can you find the mean?

Here it is!

This is a very different Gaussian

This time the mean is (0.1, 0.8)

Theorem: Sample Complexity via VC dimension If the class S of sets of \mathbb{R}^d has VC-dimension VC(S) then with

$$\widetilde{O}\left(rac{d^2}{arepsilon^2}+rac{\mathrm{VC}(\mathcal{S})}{arepsilon}
ight)$$

samples, we obtain $\widetilde{\mu}, \widetilde{\Sigma}$ such that $d_{\mathrm{tv}}(N(\mu, \Sigma), \mathcal{N}(\widetilde{\mu}, \widetilde{\Sigma})) \leq \varepsilon$

Theorem: Sample Complexity via VC dimension If the class S of sets of \mathbb{R}^d has VC-dimension VC(S) then with

$$\widetilde{O}\left(rac{d^2}{arepsilon^2}+rac{\mathrm{VC}(\mathcal{S})}{arepsilon}
ight)$$

samples, we obtain $\widetilde{\mu}, \widetilde{\Sigma}$ such that $d_{\mathrm{tv}}(N(\mu, \Sigma), \mathcal{N}(\widetilde{\mu}, \widetilde{\Sigma})) \leq \varepsilon$

Theorem: Lower Bound We construct a family S with $VC(S) = O(2^d)$ such that getting a $\tilde{\mu}$ with $\|\mu - \hat{\mu}\|_2 \leq 1$ requires $\Omega(2^{d/2})$ samples.

First learn the truncation set?

• The task is coupled with finding μ , Σ .

First learn the truncation set?

- The task is coupled with finding μ , Σ .
- Finding a set that contains all the samples is **not enough**.

First learn the truncation set?

- The task is coupled with finding μ , Σ .
- Finding a set that contains all the samples is not enough.

Left or right truncation?

First learn the truncation set?

- The task is coupled with finding μ , Σ .
- Finding a set that contains all the samples is not enough.

Left or right truncation?

First learn the truncation set?

- The task is coupled with finding μ , Σ .
- Finding a set that contains all the samples is not enough.

Left or right truncation?

First learn the truncation set?

- The task is coupled with finding μ , Σ .
- Finding a set that contains all the samples is not enough.

Left or right truncation?

XXX X X

• We find $(\widetilde{\mu}, \widetilde{\Sigma}, \widetilde{S})$ such that

 $d_{\mathrm{tv}}(\mathcal{N}(\widetilde{\mu},\widetilde{\Sigma},\widetilde{S}),\mathcal{N}(\mu,\Sigma,S)) \leq \varepsilon$

First learn the truncation set?

- The task is coupled with finding μ , Σ .
- Finding a set that contains all the samples is not enough.

Left or right truncation?

XXX X X

• We find $(\widetilde{\mu}, \widetilde{\Sigma}, \widetilde{S})$ such that

$$d_{\mathrm{tv}}(\mathcal{N}(\widetilde{\mu},\widetilde{\Sigma},\widetilde{S}),\mathcal{N}(\mu,\Sigma,S)) \leq \varepsilon$$

• Is this enough?

First learn the truncation set?

- The task is coupled with finding μ , Σ .
- Finding a set that contains all the samples is not enough.

Left or right truncation?

XXX X X

• We find $(\widetilde{\mu}, \widetilde{\Sigma}, \widetilde{S})$ such that

$$d_{\mathrm{tv}}(\mathcal{N}(\widetilde{\mu},\widetilde{\Sigma},\widetilde{S}),\mathcal{N}(\mu,\Sigma,S)) \leq \varepsilon$$

 Is this enough? Yes!

Algorithm?

- We need to find a set that contains the samples.
- Not clear how to get generic algorithm for *all* sets of low VC-dimension.

Gaussian Surface Area (GSA), $\Gamma(\mathcal{S})$

• Surface of S with respect to the Gaussian measure.
Gaussian Surface Area (GSA)

Gaussian Surface Area (GSA), $\Gamma(S)$

• Surface of S with respect to the Gaussian measure.

• $\Gamma(S) \leq \gamma$.

Theorem: Moment Matching

Two truncated Normals with $\kappa = O(\gamma^2 / \epsilon^8)$ "matching" moments are in TVD ϵ .

Theorem: Moment Matching

Two truncated Normals with $\kappa = O(\gamma^2 / \epsilon^8)$ "matching" moments are in TVD ϵ .

Theorem: Efficient Algorithm via GSA

With d^{κ} samples, in time poly(#samples) we find $\tilde{\mu}$ such that $\|\mu - \tilde{\mu}\|_2 \leq \varepsilon$.

Theorem: Moment Matching

Two truncated Normals with $\kappa = O(\gamma^2 / \epsilon^8)$ "matching" moments are in TVD ϵ .

Theorem: Efficient Algorithm via GSA

With d^{κ} samples, in time poly(#samples) we find $\tilde{\mu}$ such that $\|\mu - \tilde{\mu}\|_2 \leq \varepsilon$.

Theorem: Lower Bound

We construct a family S with GSA O(d) such that getting a $\tilde{\mu}$ with $\|\mu - \tilde{\mu}\|_2 \leq 1$ requires $\Omega(2^{d/2})$ samples.

Concept Class	GSA (γ)	Samples
degree k PTF	k Kane '11	$d^{O(k^2)}$
inter. k halfspaces	$\sqrt{\log k}$ Klivans, O'Donnell, Servedio '08	$d^{O(\log k)}$
general convex sets	d ^{1/4} Ball '93	$d^{O(\sqrt{d})}$

Concept Class	GSA (γ)	Samples
degree k PTF	k Kane '11	$d^{O(k^2)}$
inter. k halfspaces	$\sqrt{\log k}$ Klivans, O'Donnell, Servedio '08	$d^{O(\log k)}$
general convex sets	d ^{1/4} Ball '93	$d^{O(\sqrt{d})}$

Main Ingredients of Algorithm

- Polynomial Approximation.
- Stochastic Gradient Descent.

• Hermite Polynomials

$$h_0(x) = 1$$
, $h_1(x) = x$, $h_2(x) = \frac{x^2 - 1}{\sqrt{2}}$,...

• Hermite Polynomials

$$h_0(x) = 1$$
, $h_1(x) = x$, $h_2(x) = \frac{x^2 - 1}{\sqrt{2}}$,...

• Orthonormal basis w.r.t $\mathcal{N}_0.$

• Hermite Polynomials

$$h_0(x) = 1$$
, $h_1(x) = x$, $h_2(x) = \frac{x^2 - 1}{\sqrt{2}}$,...

- Orthonormal basis w.r.t $\mathcal{N}_0.$
- **Approximation** of a function *f*.

$$p_{\kappa}(x) = \sum_{\mathbf{V}: |\mathbf{V}| \le \kappa} \widehat{f}(\mathbf{V}) H_{\mathbf{V}}(x) \qquad \widehat{f}(\mathbf{V}) = \mathop{\mathbb{E}}_{x \sim \mathcal{N}_0} [H_{\mathbf{V}}(x) f(x)]$$

• Hermite Polynomials

$$h_0(x) = 1$$
, $h_1(x) = x$, $h_2(x) = \frac{x^2 - 1}{\sqrt{2}}$,...

- Orthonormal basis w.r.t $\mathcal{N}_0.$
- Approximation of a function *f*.

• Let's see what we learn if we **evaluate** the Hermite polynomials on the samples.

- Let's see what we learn if we **evaluate** the Hermite polynomials on the samples.
- Draw x_1, \ldots, x_m from $\mathcal{N}(\mu, I, S)$

$$\widetilde{c_V} = \frac{1}{m} \sum_{i=1}^m H_V(x_i)$$

- Let's see what we learn if we **evaluate** the Hermite polynomials on the samples.
- Draw x_1, \ldots, x_m from $\mathcal{N}(\mu, I, S)$

$$\widetilde{c_V} = \frac{1}{m} \sum_{i=1}^m H_V(x_i)$$

$$\mathbb{E}_{x \sim \mathcal{N}(\mu, \mathbf{I}, S)}[\widetilde{c_V}] = \mathbb{E}_{x \sim \mathcal{N}_0}\left[H_V(x) \frac{\mathbf{1}_S(x)}{\alpha} \frac{\mathcal{N}(\mu, \mathbf{I}; x)}{\mathcal{N}_0(x)}\right]$$

- Let's see what we learn if we **evaluate** the Hermite polynomials on the samples.
- Draw x_1, \ldots, x_m from $\mathcal{N}(\mu, I, S)$

$$\widetilde{c_V} = \frac{1}{m} \sum_{i=1}^m H_V(x_i) \quad \underset{x \sim \mathcal{N}_0}{\mathbb{E}} [H_V(x) f(x)]$$

$$\mathbb{E}_{x \sim \mathcal{N}(\mu, \mathbf{I}, S)}[\widetilde{c_V}] = \mathbb{E}_{x \sim \mathcal{N}_0}\left[H_V(x) \underbrace{\frac{\mathbf{1}_S(x)}{\alpha} \frac{\mathcal{N}(\mu, \mathbf{I}; x)}{\mathcal{N}_0(x)}}_{\psi(x)}\right]$$

- Let's see what we learn if we **evaluate** the Hermite polynomials on the samples.
- Draw x_1, \ldots, x_m from $\mathcal{N}(\mu, I, S)$

$$\widetilde{c_V} = \frac{1}{m} \sum_{i=1}^m H_V(x_i) \quad \underset{x \sim \mathcal{N}_0}{\mathbb{E}} [H_V(x) f(x)]$$

$$\mathbb{E}_{x \sim \mathcal{N}(\mu, \mathbf{I}, S)}[\widetilde{c_{V}}] = \mathbb{E}_{x \sim \mathcal{N}_{0}}\left[H_{V}(x) \underbrace{\frac{\mathbf{1}_{S}(x)}{\alpha} \frac{\mathcal{N}(\mu, \mathbf{I}; x)}{\mathcal{N}_{0}(x)}}_{\psi(x)}\right]$$

We can learn a function of μ and S!

• Klivans, O'Donell, Servedio '08 with degree $\kappa = O(\gamma^2 / \epsilon^2)$

$$\mathop{\mathbb{E}}_{x \sim \mathcal{N}_0} (\mathbf{1}_{\mathcal{S}}(x) - q_{\mathbf{k}}(x))^2 \leq \varepsilon$$

• Klivans, O'Donell, Servedio '08 with degree $\kappa = O(\gamma^2 / \epsilon^2)$

$$\mathop{\mathbb{E}}_{x \sim \mathcal{N}_0} (\mathbf{1}_{\mathcal{S}}(x) - q_{\kappa}(x))^2 \le \varepsilon$$

• This work with degree $\kappa = O(\gamma^2 / \varepsilon^4)$

$$\mathop{\mathbb{E}}_{x\sim\mathcal{N}_0}(\psi(x)-p_{\kappa}(x))^2\leq\varepsilon.$$

• Klivans, O'Donell, Servedio '08 with degree $\kappa = O(\gamma^2/\epsilon^2)$

$$\mathop{\mathbb{E}}_{x\sim\mathcal{N}_0}(\mathbf{1}_{\mathcal{S}}(x)-q_{\boldsymbol{\kappa}}(x))^2\leq\varepsilon$$

• This work with degree $\kappa = O(\gamma^2 / \varepsilon^4)$

$$\mathop{\mathbb{E}}_{x \sim \mathcal{N}_0} (\psi(x) - p_{\kappa}(x))^2 \leq \varepsilon.$$

• #samples = d^{κ}

ψ and its approximation

$$L(u) = \mathop{\mathbb{E}}_{x \sim \mathcal{N}_{S}^{*}} [? ? ?]$$

$$L(u) = \mathop{\mathbb{E}}_{x \sim \mathcal{N}_{S}^{*}} [h(u; x) \psi(x)]$$

• correction function h(u; x) such that

$$L(u) = \mathop{\mathbb{E}}_{x \sim \mathcal{N}_{S}^{*}} [h(u; x) \psi(x)]$$

- correction function h(u; x) such that
- L(u) is convex and the minimizer is μ !

$$L(u) = \mathbb{E}_{x \sim \mathcal{N}_{S}^{*}}[h(u; x) p_{\kappa}(x)]$$

- correction function h(u; x) such that
- L(u) is still convex and if $\kappa = \gamma^2 / \varepsilon^8$ then the minimizer is ε -close to $\mu!$

$$L(u) = \mathbb{E}_{x \sim \mathcal{N}_{\mathcal{S}}^{*}}[h(u; x) p_{\kappa}(x)]$$

- correction function h(u; x) such that
- L(u) is still convex and if $\kappa = \gamma^2 / \epsilon^8$ then the minimizer is ϵ -close to $\mu!$
- *L* is strongly convex.
- The variance of the update is bounded.

Our Results

Nearly tight sample complexity bounds with respect to VC-dimension and GSA.

Our Results

Nearly tight sample complexity bounds with respect to VC-dimension and GSA.

First efficient algorithm for truncated statistics with **unknown truncation sets**.

Our Results

Nearly tight sample complexity bounds with respect to VC-dimension and GSA.

First efficient algorithm for truncated statistics with unknown truncation sets.

Open Problems

• Truncated statistics beyond Gaussian?

Our Results

Nearly tight sample complexity bounds with respect to VC-dimension and GSA.

First efficient algorithm for truncated statistics with unknown truncation sets.

Open Problems

- Truncated statistics beyond Gaussian?
- Improve the runtime for specific classes.

Our Results

Nearly tight sample complexity bounds with respect to VC-dimension and GSA.

First efficient algorithm for truncated statistics with **unknown truncation sets**.

Open Problems

- Truncated statistics beyond Gaussian?
- Improve the runtime for specific classes.
- Depend **polynomially** on the accuracy $1/\varepsilon$.

Our Results

Nearly tight sample complexity bounds with respect to VC-dimension and GSA.

First efficient algorithm for truncated statistics with **unknown truncation sets**.

Open Problems

- Truncated statistics beyond Gaussian?
- Improve the runtime for specific classes.
- Depend **polynomially** on the accuracy $1/\varepsilon$.

Thank You!