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Truncated Data

We want to estimate the mean of a population.
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Truncated Data

But we’re given only data from a subset of space.
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Poincare’s Baker

• Poincare’s baker was advertising his loaves to be 1Kg.

• Poincare weighted the bread he bought.

• Average weight was 950 grams!
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Next Year

• After another year of bread data...

• All Poincare’s loaves were above 1 Kg...

• But Poincare complained again! Average weight was still 950 grams!
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Truncated Normals

Truncated Normal Distribution

N (µ, Σ,S ; x) =
1S (x)

α
N (µ, Σ; x),

α =
∫

1S (x)N (µ, Σ; x)dx

We assume that the set S has (Gaussian) mass α at least 1%.

Estimation Problem

• Data xi ∼ N (µ, Σ,S)

• Find µ̃, Σ̃ such that

dtv(N (µ, Σ),N (µ̃, Σ̃)) ≤ ε
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Previous Work

• Has long history in statistics that dates back to Galton and Pearson.

• simple truncation sets are considered: left or box truncation etc.
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Previous Work

Daskalakis, Gouleakis, Tzamos, Zambetakis, FOCS 2018.

• Assume that the set S is known. Membership access to the set.

• Õ(d2/ε2) samples suffice to learn the parameters.

• S unknown?

They construct a very complicated truncation set that makes it

information theoretically impossible.

Main Open Problem

• Truncation S is unknown and of bounded “complexity”.
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Can you find the mean?
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Here it is!
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This is a very different Gaussian
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This time the mean is (0.1,0.8)
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Our Results: Sample Complexity via VC-dimension

Theorem: Sample Complexity via VC dimension

If the class S of sets of Rd has VC-dimension VC(S) then with

Õ

(
d2

ε2
+

VC(S)
ε

)
samples, we obtain µ̃, Σ̃ such that dtv(N(µ, Σ),N (µ̃, Σ̃)) ≤ ε

Theorem: Lower Bound

We construct a family S with VC(S) = O(2d ) such that getting

a µ̃ with ‖µ− µ̂‖2 ≤ 1 requires Ω(2d/2) samples.
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Õ

(
d2

ε2
+

VC(S)
ε

)
samples, we obtain µ̃, Σ̃ such that dtv(N(µ, Σ),N (µ̃, Σ̃)) ≤ ε

Theorem: Lower Bound

We construct a family S with VC(S) = O(2d ) such that getting

a µ̃ with ‖µ− µ̂‖2 ≤ 1 requires Ω(2d/2) samples.

12



Our Results: Sample Complexity via VC-dimension

First learn the truncation set?

• The task is coupled with finding µ, Σ.

• Finding a set that contains all the samples is not enough.

• We find (µ̃, Σ̃, S̃) such that

dtv(N (µ̃, Σ̃, S̃),N (µ, Σ,S)) ≤ ε

• Is this enough?

Yes!
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Our Results: Sample Complexity via VC-dimension

Algorithm?

• We need to find a set that contains the samples.

• Not clear how to get generic algorithm for all sets of low

VC-dimension.
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Gaussian Surface Area (GSA)

Gaussian Surface Area (GSA), Γ(S)
• Surface of S with respect to the Gaussian measure.

• Γ(S) ≤ γ.
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Our Results: Efficient Algorithm via Gaussian Surface Area

Theorem: Moment Matching

Two truncated Normals with κ = O(γ2/ε8) “matching” moments

are in TVD ε.

Theorem: Efficient Algorithm via GSA

With dκ samples, in time poly(#samples) we find µ̃ such that

‖µ− µ̃‖2 ≤ ε.

Theorem: Lower Bound

We construct a family S with GSA O(d) such that getting a µ̃

with ‖µ− µ̃‖2 ≤ 1 requires Ω(2d/2) samples.
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Performance of the Algorithm

Concept Class GSA (γ) Samples

degree k PTF k Kane ’11 dO(k2)

inter. k halfspaces
√

log k Klivans, O’Donnell, Servedio ’08 dO(log k)

general convex sets d1/4 Ball ’93 dO(
√
d)

Main Ingredients of Algorithm

• Polynomial Approximation.

• Stochastic Gradient Descent.
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Polynomial Approximation

• Hermite Polynomials

h0(x) = 1, h1(x) = x , h2(x) =
x2 − 1√

2
, . . .

• Orthonormal basis w.r.t N0.

• Approximation of a function f .

pκ(x) = ∑
V :|V |≤κ

f̂ (V )HV (x) f̂ (V ) = E
x∼N0

[HV (x)f (x)]

������
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Learning a Weighted Indicator

Idea

• Let’s see what we learn if we evaluate the Hermite polynomials on

the samples.

• Draw x1, . . . , xm from N (µ, I,S)

c̃V =
1

m

m

∑
i=1

HV (xi )

E
x∼N0

[HV (x)f (x)]

We can learn a function of µ and S!
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Approximating a weighted Characteristic function

• Klivans, O’Donell, Servedio ’08 with degree κ = O(γ2/ε2)

E
x∼N0

(1S (x)− qκ(x))
2 ≤ ε

• This work with degree κ = O(γ2/ε4)

E
x∼N0

(ψ(x)− pκ(x))
2 ≤ ε.

• #samples = dκ
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ψ and its approximation

The true Gaussian has mean −1, and the set is x > 0.
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The Convex Objective

SGD objective

L(u) = E
x∼N ∗S

[? ? ?]

• correction function h(u; x) such that

• L(u) is still convex and if κ = γ2/ε8 then the minimizer is ε-close

to µ!

• L is strongly convex.

• The variance of the update is bounded.

22
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Recap and Open Problems

Our Results

Nearly tight sample complexity bounds with respect to VC-

dimension and GSA.

First efficient algorithm for truncated statistics with unknown

truncation sets.

Open Problems

• Truncated statistics beyond Gaussian?

• Improve the runtime for specific classes.

• Depend polynomially on the accuracy 1/ε.

Thank You!
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