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Truncated Data

We want to estimate the mean of a population.
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Truncated Data

But we're given only data from a subset of space.
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e Poincare's baker was advertising his loaves to be 1Kg.
e Poincare weighted the bread he bought.

e Average weight was 950 grams!
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Truncated Normals

Truncated Normal Distribution

NL, S x) = ISDEX)./\/’(;J,Z;X),
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Truncated Normals

Truncated Normal Distribution

Q= /ls(x)/\/(y,Z;x)dx
We assume that the set S has (Gaussian) mass « at least 1%.

Estimation Problem
e Data x; ~ N (y, %, S)
e Find I, X such that

dy (N (11, 2), N (1, 2)) < e



e Has long history in statistics that dates back to Galton and Pearson.



e Has long history in statistics that dates back to Galton and Pearson.

TRU;'ﬁSTED Eﬁ%%rﬁ:ssmu
ensored,
CENSORED L
SAMPLES

Theory and Applications

A. CUFFORD COHEN




e Has long history in statistics that dates back to Galton and Pearson.

TRU;'ﬁSTED Eﬁ%%rﬁ:ssmu
ensored,
CENSORED L
SAMPLES

Theory and Applications.

A. CUFFORD COHEN

e simple truncation sets are considered: left or box truncation etc.
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Daskalakis, Gouleakis, Tzamos, Zambetakis, FOCS 2018.
e Assume that the set S is known. Membership access to the set.
o O(d?/€?) samples suffice to learn the parameters.

e S unknown?
They construct a very complicated truncation set that makes it
information theoretically impossible.

Main Open Problem

e Truncation S is unknown and of bounded “complexity”.



Can you find the mean?




Here it is!
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Our Results: Sample Complexity via VC-dimension

Theorem: Sample Complexity via VC dimension
If the class S of sets of RY has VC-dimension VC(S) then with
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samples, we obtain 7i, ¥ such that di(N(u, Z), N (1, Z)) < ¢
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Our Results: Sample Complexity via VC-dimension

Theorem: Sample Complexity via VC dimension
If the class S of sets of RY has VC-dimension VC(S) then with

5 <d_2 . vc<5)>

€2 €

samples, we obtain 7i, ¥ such that di(N(u, Z), N (1, Z)) < ¢

Theorem: Lower Bound
We construct a family S with VC(S) = 0(29) such that getting
a i with ||p — fi||, < 1 requires Q(29/2) samples.
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Our Results: Sample Complexity via VC-dimension

First learn the truncation set?
e The task is coupled with finding u, X.

e Finding a set that contains all the samples is not enough.

Left or right truncation?

XX*¥—X—%-0

e We find (7,2, S) such that

dtv(./\/(ﬁ,i,g),/\/'(y,z, S)) <e

e |s this enough?
Yes!
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Our Results: Sample Complexity via VC-dimension

Algorithm?
e We need to find a set that contains the samples.

e Not clear how to get generic algorithm for all sets of low
VC-dimension.
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Gaussian Surface Area (GSA)

Gaussian Surface Area (GSA), T'(S)

e Surface of S with respect to the Gaussian measure.
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Gaussian Surface Area (GSA), T'(S)

e Surface of S with respect to the Gaussian measure.




Our Results: Efficient Algorithm via Gaussian Surface Area

Theorem: Moment Matching
Two truncated Normals with k = O(7?/£8) “matching” moments
are in TVD e.
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Our Results: Efficient Algorithm via Gaussian Surface Area

Theorem: Moment Matching
Two truncated Normals with k = O(7?/£8) “matching” moments
are in TVD e.

Theorem: Efficient Algorithm via GSA
With d* samples, in time poly(#samples) we find i such that

I —lly <&

Theorem: Lower Bound
We construct a family S with GSA O(d) such that getting a i
with ||z — fi||, < 1 requires Q2(29/2) samples.
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Performance of the Algorithm

Concept Class GSA (v) Samples
degree k PTF k dO(k%)
inter. k halfspaces  +/log k dOllogk)
general convex sets  d1/4 JO(Vd)

17



Performance of the Algorithm

Concept Class GSA (v) Samples
degree k PTF k dO(k%)
inter. k halfspaces  +/log k dOllogk)
general convex sets  d1/4 JO(Vd)

Main Ingredients of Algorithm
e Polynomial Approximation.

e Stochastic Gradient Descent.
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Polynomial Approximation

e Hermite Polynomials
x?—1

ho(x) =1, hi(x) =x, ha(x) = 7
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Polynomial Approximation

e Hermite Polynomials
x?—1

ho(x) =1, hi(x) =x, ha(x) =

e Orthonormal basis w.r.t Ny.
e Approximation of a function f.

()= Y, f(VHv(x) F(V)= E [Hy(x)f(x)]
V:|V|<k

A/

— p5(x) —— pao(x) x> 1} 18



Learning a Weighted Indicator

Idea

e Let's see what we learn if we evaluate the Hermite polynomials on
the samples.
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Learning a Weighted Indicator

Idea

e Let's see what we learn if we evaluate the Hermite polynomials on
the samples.

e Draw xq, ..., xm from N (1,1, S)

_ 12
cv=_ ,; Hy (x;)
&l — Ls(x) N (g L x)
XNN]](E;:LI,S)[CV} - XlE HV(X) P No(X)
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Learning a Weighted Indicator

Idea
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the samples.
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Learning a Weighted Indicator

Idea

e Let's see what we learn if we evaluate the Hermite polynomials on
the samples.

e Draw x, ..., xm from N (i, 1, S)

cv=— ZHV x;) B _[Hy(x)f(x)]

XN.\ 0

&l — 1s(x) N L x)
XNN]EJ,I,S)[CV} - XLI:E\'O HV(X) o No (X)
—_——

¥(x)

We can learn a function of y and S!
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Approximating a weighted Characteristic function

° with degree « = 0(72/€2>
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Approximating a weighted Characteristic function

° with degree « = 0(72/€2>

B (150 —a())* <e

° with degree x = 0(72 /84)

xiENo(lp(X) —pe(x))? <e
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Approximating a weighted Characteristic function

o with degree x = O(2/¢?)
E (1s(x) = ge(x))* <e
x~No
o with degree x = O(7?/¢*)

E (90— 0P <

e Fsamples = d*
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Y and its approximation

The true Gaussian has mean —1, and the set is x > 0.
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The Convex Objective

SGD objective

L(u) = XFN;[? 2 7]
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SGD objective

L) = B Ih(uix)$()]

e correction function h(u; x) such that

o L(u)is and the minimizer is !
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The Convex Objective

SGD objective

L(u) = XﬁNg[h(U:X)PK(X)]

e correction function h(u; x) such that

o [(u)is still and if x = 72 /€8 then the minimizer is ¢-close
to u!
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The Convex Objective

SGD objective

L(u) = XﬁNg[h(U:X)PK(X)]

e correction function h(u; x) such that

L(u) is still and if x = 72 /€® then the minimizer is ¢-close

to u!

L is strongly convex.

e The variance of the update is bounded.
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Recap and Open Problems

Our Results

Nearly tight sample complexity bounds with respect to VC-
dimension and GSA.
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Recap and Open Problems

Our Results

Nearly tight sample complexity bounds with respect to VC-
dimension and GSA.

First efficient algorithm for truncated statistics with unknown
truncation sets.

Open Problems
e Truncated statistics beyond Gaussian?
e Improve the runtime for specific classes.

e Depend polynomially on the accuracy 1/¢.

Thank You!
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