
programming with dependent types

Kontonis Vasilis
October 17, 2015

NTUA

table of contents

1. Why Dependent Types?

2. Introduction to Idris

3. A Type Safe printf

4. Theorem Proving

5. Type Providers

2

why dependent types?

a simple problem

Consider a simple function which returns the first element of a
non-empty array.
Here is a naive implementation in python:
def head(arr):
return arr[0]

Some fail senarios for this code:

1. You pass value that is not an array
2. You pass null
3. You pass an empty array

These problems derive from the dynamic type system of python
(also ruby etc.)

4

a simple problem

Let’s try java:
public int head(int[] list) {
return list[0];

}

Now we are sure that the argument passed to first will be an int list.
Java handles the first flaw at compile time itself but cannot know if
list is Null or empty so the other 2 points still remain.

5

a simple problem

Haskell to the rescue !
head :: [a] -> a
head xs = xs !! 0

Haskell is known to have a very safe static type system and doesn’t
allow to pass null when calling head.

However the we must be able to make sure, at compile time, that the
argument passed to first will always be a non-empty array. That is,
the length of the array should also be part of the type of the
argument.

Those types are called Dependent Types because they depend on
the value they hold.

We’ll use Idris to write the definition of first that does not have any
of those flaws.

6

introduction to idris

introduction to idris

In conventional programming languages, there is a clear distinction
between types and values.

In a language with dependent types, however, the distinction is less
clear. Types are a first class language construct and can be
manipulated like any other value.

The standard example is the type of lists of a given length, Vect n a,
where a is the element type and n is the length of the list and can
be an arbitrary term.

Idris is a general-purpose purely functional programming language
with dependent types.

Note that parametric polymorphism refers to when the type of a
value contains one or more (unconstrained) type variables, so that
the value may adopt any type that results from substituting those
variables with concrete types.

8

natural numbers

Compilers don’t really know the difference between 0 and 1.

An int is something that doesn’t have a decimal value for compilers.
0 and 1 have different values at runtime, but at compile time, they
are just ints.

We need to teach the compiler that there’s a difference between
them so that we can achieve our ultimate goal of accepting a
non-empty array.

We’ll recursively define Natural Numbers. So, a natural number is
either zero or a successor of another natural number.
data Nat = Z | S Nat

one = S Z
two = S (S Z)

Idris automatically de-sugars the above Natural numbers:
Idris> S (S (S Z))
3 : Nat

9

the vector datatype

Let’s implement Vect recursively.
A vector can be of length zero (Vect Z a) or it can be an element
appended to another Vector.

In that case its length will be exactly 1 more than the other Vector.

So, if the other vector is of length n, its length will be n+1. If n is Nat,
it’ll be S n.
data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

• Nat : length of the Vector
• Type #1 : type of the elements of the Vector.
• Type #2 : the resultant dependent type.

zeroVect : Vect 0 Int
zeroVect = Nil

fourVect : Vect 4 String
fourVect = ”A” :: ”Neat” :: ”String” :: ”Vector” :: Nil

10

a solution to our problem

Now that we have our Vector Datatype, writing a safe head is easy.
It’s just a function that takes any Vect with length greater than zero,
i.e. S n where n is any Nat. Even if n is Z, S n is 1.
head : Vect (S k) a -> a
head (x::xs) = x

We can always guarantee that first always receives an array that is
neither null nor empty.

We can observe now that Dependent Types allow us to encode any
runtime possibility into the type and have it checked at compile time.

This allows for having no runtime errors at all.

11

a type safe printf

unsafe printf

This is the case with printf from Haskell’s Text.Printf
> printf ”Hello %s, %d is the best number!\n” ”There” 7
Hello There, 7 is the best number!

Throws a exception if we don’t provide an Int for %d
> printf ”Hello %s, %d is the best number!\n” ”There” ”yo”
Hello There, *** Exception: printf: bad formatting char ’d’

the same if we don’t supply enough arguments ...
> printf ”Hello %s, %d is the best number!\n” ”There”
Hello There, *** Exception: printf: argument list ended prematurely

or too many.
> printf ”Hello %s, %d is the best number!\n” ”There” 7 13
Hello There, 7 is the best number!
*** Exception: printf: formatting string ended prematurely

13

totality checking

The Halting Problem states that there are programs that cannot be
proven to terminate. That does not mean that it is impossible to
prove that any program terminates.

Idris and other languages with totality checking put some
restrictions on the forms that functions are allowed to take so that
totality checking is possible.

In Idris, partial functions are allowed by default. A totality
requirement can be specified per-function. This line enforces
totality checking by default for functions in this module.
%default total

14

parse input

We create a simple recursive datatype to distinguish the formatting
modifiers.
data Format = FInt Format -- %d

| FString Format -- %s
| FOther Char Format -- [a-zA-Z0-9]
| FEnd

format parses the input string.
format : List Char -> Format
format (’%’::’d’::cs) = FInt (format cs)
format (’%’::’s’::cs) = FString (format cs)
format (c::cs) = FOther c (format cs)
format [] = FEnd

15

format example

In idris String is not a List of Char (like Haskell) so we have to unpack
the input string to provide format with a Char List.
formatString : String -> Format
formatString s = format (unpack s)

> formatString ”Hello %s, %d”
FOther ’H’

(FOther ’e’
(FOther ’l’

(FOther ’l’
(FOther ’o’

(FOther ’ ’
(FString (FOther ’,’

(FOther ’ ’
(FInt FEnd)))))))))

: Format

16

types depend on values

interpFormat returns the type that our input Format should have.
This is possible due to the dependent type system of idris.
interpFormat : Format -> Type
interpFormat (FInt f) = Int -> interpFormat f
interpFormat (FString f) = String -> interpFormat f
interpFormat (FOther _ f) = interpFormat f
interpFormat FEnd = String

> interpFormat $ formatString ”Hello %s, %d is the best number!”
String -> Int -> String : Type

> interpFormat $ formatString ”asdf %d asdf %s %d ”
Int -> String -> Int -> String : Type

17

safe printf

For the last step we need to create a function of the type we
constructed from the input Format.

toFunction takes fmt which is of Type Format, an accumulator String
and returns a curried function of the type that interpFormat returns
for fmt.
toFunction : (fmt : Format) -> String -> interpFormat fmt

We use pattern matching to append recursively every element to the
final string.
toFunction (FInt f) a = \i => toFunction f (a ++ show i)
toFunction (FString f) a = \s => toFunction f (a ++ s)
toFunction (FOther c f) a = toFunction f (a ++ singleton c)
toFunction FEnd a = a

The notation \x => val constructs an anonymous function which
takes one argument, x and returns the expression val.
printf : (s : String) -> interpFormat (formatString s)
printf s = toFunction (formatString s) ””

18

much safe so dependent wow

> printf ”Hello %s, %d is the best number!” ”there” 13
”Hello there, 13 is the best number!” : String

If we provide less arguments it simply returns a function instead of
crashing
> printf ”test %d”
\i => prim__concat ”test ” (prim__toStrInt i) : Int -> String

With more arguments it finds the mismatch at compile time
> printf ”test %d” 10 10
builtin:Type mismatch between

String (Type of printf ”test %d” 10)
and

argTy -> retTy (Expected type)

and so does if don’t provide an argument of the correct type
> printf ”test %s” 10
String is not a numeric type

19

theorem proving

curry-howard and proofs

According to the Curry-Howard correspondence, mathematical
propositions can be represented in a program as types.

An implementation that satisfies a given type serves as a proof of
the corresponding proposition. In other words, inhabited types
represent true propositions.

The Curry-Howard correspondence applies to every language with
type checking.

The type systems in most languages are not expressive enough to
build very interesting propositions. On the other hand, dependent
types can express quantification (i.e., the mathematical concepts of
universal quantification and existential quantification).

This makes it possible to translate a lot of interesting math into
machine-verified code.

21

proposition as types

Because a partial function can introduce a logical contradiction,
which would make proofs unreliable, totality checking is useful for
theorem proving.

We have already seen that a type can be indexed by another type.
Here is a constructor for indexed types from the Idris standard
library:
data LTE : (n, m : Nat) -> Type where
lteZero : LTE Z right
lteSucc : LTE left right -> LTE (S left) (S right)

This declares that LTE is a constructor that takes two Nat values as
parameters, and produces a concrete Type. The types that LTE
constructs also happen to be propositions which state that:

“the natural number n is less than or equal to the natural number
m”.

22

a proposition as a function

lteZero is a singleton value - it is a constructor that takes no
arguments. But its type contains a variable; so it is polymorphic.
lteZero can satisfy any type of the form, LTE Z n.

lteZero is effectively an axiom, stating a fundamental property of
natural numbers.

Given the definition of LTE it is possible to write a proposition, such
as, “zero is less than or equal to every natural number”.
nonNegative : (n : Nat) -> LTE Z n

The proposition is written as the type of a function that takes a
number as input. The value that is given is assigned to the variable
n, which is used to specify the return type. Thus the return type of
nonNegative depends on the input value.

23

a simple proof

To write an implementation for nonNegative, it is necessary to
produce a value of the appropriate LTE type without any information
about what input might be given - other than the fact that it will be a
natural number.

Totality checking is enabled, so any implementation must be
applicable to every possible input.

Thus a type of the form, (x : A) -> P x describes universal
quantification over the type A.

nonNegative happens to be a restatement of the axiom, lteZero.

So an implementation-proof is trivial:
nonNegative : (n : Nat) -> LTE Z n
nonNegative n = lteZero

24

induction in proofs

lteSucc maps a given proof to a proof of a related proposition. It is
used in proofs-by-induction.

For example, a proof that every number is less than or equal to itself:
lteReflexive : (n : Nat) -> LTE n n
lteReflexive Z = lteZero
lteReflexive (S n) = lteSucc (lteReflexive n)

The proof that zero is equal to itself is given by the axiom.

For every other number, the proof is given as an inductive step using
a proof for the next-smallest number.

Because the type of lteSucc is that of a function, it can be read as a
proposition involving logical implication:

“n <= m implies that n + 1 <= m + 1.”

In general, types of the form P x -> Q y can be read as logical
implication.

25

existential quantification

We have seen that the input value to a function can be labelled and
referenced in the output type.

That is a special property of functions.

For example, it is not permissible to label the value in the first
position of a tuple type to reference it in the second position. For
this reason there is a special construction, the dependent pair,
which does allow this.

Dependent pairs are used to represent existential quantification.

A dependent pair type of the form (x : A ** P x) is read as existential
quantification over the type A.

A proof of a proposition with existential quantification can be given
as a pair of an arbitrary value and a proof that the proposition holds
for that value.

26

archimedean property

“For every natural number, n, there exists a natural number, m,
where m > n”:
archimedean : (n : Nat) -> (m : Nat ** LTE (S n) m) -- n + 1 <= m
archimedean n = (S n ** lteReflexive (S n))

The quantified proposition uses (S n) instead of just n to indicate
that m must be strictly greater than n - greater-than-or-equal-to is
not sufficient.

The Dependent Pair consists of:

• The witness S n - a specific value that is used to prove that the
quantified proposition holds.

• The proof that the witness is greater than or equal to S n - as is
required by the type. Since S n and S n are equal, lteReflexive
suffices.

27

type providers

what are type providers

Idris type providers, inspired by F#’s type providers, are a means of
making our types be “about” something in the world outside of Idris.

For example, given a type that represents a database schema and a
query that is checked against it, a type provider could read the
schema of a real database during type checking.

Idris type providers use the ordinary execution semantics of Idris to
run an IO action and extract the result. This result is then saved as a
constant in the compiled code.

It can be a type, in which case it is used like any other type, or it can
be a value, in which case it can be used as any other value, including
as an index in types.

29

a simple provider

A provider p for some type t is simply an expression of type IO
(Provider t). The %provide directive causes the type checker to
execute the action and bind the result to a name.

The type provider fromFile reads a text file. If the file consists of the
string ”Int”, then the type Int will be provided. Otherwise, it will
provide the type Nat.
strToType : String -> Type
strToType ”Int” = Int
strToType _ = Nat

fromFile : String -> IO (Provider Type)
fromFile fname = do
str <- readFile fname
return (Provide (strToType (trim str)))

30

a simple provider

We then use the %provide directive:
%provide (T1 : Type) with fromFile ”theType”
foo : T1
foo = 2

If the file named theType consists of the word Int, then foo will be an
Int. Otherwise, it will be a Nat.

When Idris encounters the directive, it first checks that the provider
expression fromFile ”theType” has type IO (Provider Type).

Next, it executes the provider. If the result is Provide t, then T1 is
defined as t. Otherwise, the result is an error.

31

the provider datatype

Our datatype Provider t has the following definition:
data Provider a = Error String | Provide a

We have already seen the Provide constructor. The Error constructor
allows type providers to return useful error messages

32

Questions?

33

references I

• Ana Bove and Peter Dybjer Dependent Types at Work
• Thorsten Altenkirch, Conor McBride, James McKinna
Why Dependent Types Matter

• Conor McBride Totality Versus Turing-Completeness
• David Raymond Christiansen Dependent Type Providers
• Idris Documentation and Official Tutorial
https://idris.readthedocs.org/en/v0.9.19.1/index.html

• Brian McKenna A Type Safe Printf
https://gist.github.com/puffnfresh/11202637

• Haskell Wiki
https://wiki.haskell.org/Haskell

34

https://idris.readthedocs.org/en/v0.9.19.1/index.html
https://gist.github.com/puffnfresh/11202637
https://wiki.haskell.org/Haskell

	Why Dependent Types?
	Introduction to Idris
	A Type Safe printf
	Theorem Proving
	Type Providers

