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Convex Problems



Optimization Problem

General Optimization Problem:

minimize f0(x)

subject to fi(x) 6 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• Domain of the problem:

D =

m⋂
i=0

domfi ∩
p⋂

i=1

domhi

• When a point x is feasible?

• p∗ = inf{f0(x) | x is feasible}

• A feasible point x with f0(x) 6 p∗ + ε is called ε-suboptimal.

• A feasible point x is locally optimal if it is optimal in a norm ball of

radius R > 0.
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Convex Optimization Problem (CP)

We minimize a convex objective over a convex set.

Generic Convex Problem:

minimize f0(x)

subject to fi 6 0, i = 1, . . . ,m

Ax = b

• f0, fi must be convex.

• The equality constraints must be affine.

• The feasible set of this problem is convex. Why?

• If f0 is quasiconvex the problem is called quasiconvex.

• For convex and quasiconvex problems the optimal set, and the

ε-suboptimal sets are convex.

• Locally optimal points are globally optimal.
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Optimality Criteria

A point x is optimal iff x ∈ X and

∇f0(x)T (y− x) > 0, for all y ∈ X.

• Unconstraint problems ∇f0(x) = 0.

Example: f0(x) = (1/2)xTPx+ qTx+ r, ∇f0(x) = xTP + qT

• Equality Constraints

minimize f0(x)

subject to Ax = b

∇f0(x) ⊥ N(A) =⇒ ∇f0(x) ∈ R(AT ). Therefore we obtain the

Langrange Multiplier optimality condition:

∇f0(x) +ATv = 0
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Quasiconvex Optimization

A quasiconvex problem can have locally optimal solutions that are not

globally optimal.

Optimality Condition: A point x is optimal if

∇f0(x)T (y− x)>0, for all y ∈ X \ {x}.

Quasiconvexity of f0 implies that there exist a family of convex functions

φt : Rn → R, t ∈ R such that f0(x) 6 t⇔ ϕt(x) 6 0, moreover it

holds s > t =⇒ ϕs(x) 6 ϕt(x).

Consider the feasibility problem

find x

subject to ϕt(x) 6 0

fi(x) 6 0, i = 1, . . . ,m

Ax = b

Can we use this feasibility problem to derive an approximation algorithm

for the Quasiconvex Optimization problem?
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Quasiconvex Optimization

A quasiconvex problem can have locally optimal solutions that are not

globally optimal.

Optimality Condition: A point x is optimal if

∇f0(x)T (y− x)>0, for all y ∈ X \ {x}.

Quasiconvexity of f0 implies that there exist a family of convex functions

φt : Rn → R, t ∈ R such that f0(x) 6 t⇔ ϕt(x) 6 0, moreover it

holds s > t =⇒ ϕs(x) 6 ϕt(x).

Consider the feasibility problem

find x

subject to ϕt(x) 6 0

fi(x) 6 0, i = 1, . . . ,m

Ax = b

Bisection
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Linear Programming



Chebyshev Inequalities

Let X be a RV with values {u1, . . . , un}, pi = Pr(X = ui).

Assume that the distribution of X, namely the pi, is unknown.

Assume that we have upper and lower bounds on expected values of

some function of X and probabilities of some subsets of R.

E[f(X)] =
n∑

i=1

pif(ui), Pr[x ∈ S] =
∑
ui∈S

pi

LP:

minimize aT0p

subject to p > 0, 1Tp = 1,

αi 6 a
T
i p 6 βi, i = 1, . . . ,m
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Linear Fractional Programming

Suppose we want to minimize a ratio of linear functions

f0(x) =
cTx+d
eTx+f

, domf0 = {x | eTx+ f > 0}.

minimize f0(x)

subject to Gx 6 h

Ax = b

Equivalent LP:

minimize (y,z) cTy+ dz

subject to Gy− hz 6 0

Ay− bz = 0

eTy+ fz = 1

z > 0

To show equivalence consider the pair

y =
x

eTx+ f
, z =

1

eTx+ f 7



Quadratic Programming



QP & QCQP

Basic QP Problem

minimize (1/2)xTPx+ qTx+ r

subject to Gx 6 h

Ax = b

If we allow quadratic inequality constraints we have a QCQP problem

minimize (1/2)xTPx+ qTx+ r

subject to (1/2)xTPix+ q
T
i x+ ri 6 0, i = 1, . . . ,m

Ax = b

• The feasible region is the intersection of ellipsoids.

• Generalizes QP and LP.
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Bounded Least Squares

The well-known least squares problem

minimize ‖Ax− b‖22 = xT (ATAx) − 2bTAx+ bTb

In the unconstraint case we can obtain the normal equations

ATAx = ATb.

The QP for constraint Least Squares:

minimize ‖Ax− b‖22
subject to li 6 xi 6 ui, i = 1, . . . , n

Examples:

• Estimation of non-negative parameters.

• Isotonic (or Monotonic) Regression, x1 6 x2 6 . . . 6 xn.
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Isotonic Regression
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Polyhedra Distance

Let P1 = {x | A1x 6 b1} and P2 = {x | A2x 6 b2} be two polyhedra in

Rn.

dist(P1, P2) = inf{‖x1 − x2‖2 | x1 ∈ P1, x2 ∈ P2}

The QP:

minimize ‖x1 − x2‖22
subject to A1x1 6 b1, A2x2 6 b2
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Bounding Variance

We want to bound the variance of a function f of the RV of Chebyshev

Inequalities problem.

Var[f(X)] = E[f2(X)] − (E[f(X)])2 =
∑

f2ipi −
(∑

fipi

)2
QP:

maximize Var[f(X)]

subject to αi 6 a
T
i p 6 βi, i = 1, . . . ,m

p > 0, 1Tp = 1
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Linear Program with Random Cost

Let c ∈ Rn be a Random Vector, with mean c̄ and covariance

E(c− c̄)(c− c̄)T = Σ.

Basic LP:

minimize cTx

subject to Gx 6 h

Ax = b

• Trade-off between small expected cost and small cost variance.

• Define the risk-sensitive cost E[cTx] + γVar(cTx), where γ is the

risk-aversion parameter. Is the covariance matrix PSD?

QP:

minimize c̄Tx+ γxTΣx

subject to Gx 6 h

Ax = b 13



Markowitz portfolio Optimization

• n assets held over a period of time.

• xi(dollars) amount of asset i held throughout the period.

• pi relative change in the price of asset i over the period, r = pTx

return of the portfolio.

• We do not allow ”shorting” assets, x > 0.

• Total budget is assumed to be 1, 1Tx = 1.

We assume p to be a Random Vector with mean p̄ and covariance Σ.

QP:

minimize xTΣx

subject to p̄Tx > rmin

1Tx = 1, x > 0
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Markowitz portfolio Optimization

Extensions:

• To allow short positions xi < 0 we introduce xlong, xshort s.t.

xlong > 0, xshort > 0, x = xlong − xshort, 1
Txshort > η1

Txlong

• Include linear transaction costs to go from an initial portfolio xinit

to a desired portfolio x, which then is held over the period.

x = xinit + ubuy − usell,

ubuy > 0, usell > 0.

Initial buying and selling involves zero net cach:

(1− fsell)1
Tusell = (1+ fbuy)1

Tubuy

fbuy, fsell > 0.

15



Second-Order Cone

Programming



Dual Spaces

Linear Maps

Let X, Y be two normed spaces.

• A map T : X→ Y s.t T(λx1 + µx2) = λT(x1) + µT(x2) is a linear

map.

• T is bounded if there is a constant c s.t. ‖Tx‖Y 6 c‖x‖X.

‖T‖ = min{c > 0 : ∀x ∈ X, ‖Tx‖ 6 c‖x‖}.
• Operator Norm ‖T‖ = supx 6=0

‖Tx‖
‖x‖ = sup‖x‖=1 ‖Tx‖.

• ‖F‖2 = sup{‖Fx‖2 | ‖u‖2 6 1} =
√
λmax(FTF)

Linear Functional

A Linear functional is a Linear Map F : X→ R.

Dual Space

Let X be a normed space. The space X∗ of the bounded linear

functionals F : X→ R is the dual space of X.
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Dual Norms

Let ‖ · ‖ be a norm on Rn. Its dual norm is defined

‖z‖∗ = sup{zTx | ‖x‖ 6 1} = sup{|zTx| | ‖x‖ 6 1}

• ‖x‖∗∗ = ‖x‖. Does not hold in infinite-dimensional vector spaces.

• The `2 norm is self-dual.

• The dual of `∞-norm is the `1-norm.
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Definition

Norm Cone: C = {(x, t) | ‖x‖ 6 t} ⊆ Rn+1.

SOCP Definition:

minimize fTx

subject to ‖Aix+ bi‖2 6 cTi x+ di, i = 1, . . . ,m

Fx = g

• SOCP is a generalization of LP and QCQP.

xTP0x+ 2q
T
0x+ r0 = ‖P1/20 x+ P

−1/2
0 q0‖2 + r0 − qT0P

−1
0 q0

The optimal values of the QCQP and the SOCP are equal up to a

square root and a constant.

• The second-order cone constraint requires that the affine function

(Ax+ b, cTx+ d) lies in the second-order cone in Rk+1
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Robust Linear Programming

Often we only know approximations of the coefficients the usual LP:

minimize cTx

subject to aTi x 6 bi, i = 1, . . . ,m

Assume that c, bi are known exactly but ai are known to lie in ellipsoids

Ei = {āi + Piu | ‖u‖2 6 1}.

Robust SOCP:

minimize cTx

subject to āi
Tx+ ‖PTi x‖2 6 bi, i = 1, . . . ,m
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Linear Programming with Random Constraints

Statistical framework for the robust LP.

Each constraint ai is a Gaussian Random Vector with mean āi and

covariance Σi and the constraints must hold with confidence at least

η > 1/2 (Why?)

minimize cTx

subject to Pr[aTi x 6 bi] > η

Equivalent SOCP:

minimize cTx

subject to āTi x+Φ
−1(η)‖Σ1/2x‖2 6 bi, i = 1, . . . ,m
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Generalized Inequalities & SDP



Generalized Inequalities

Cone & Convex Cone

• K is a cone if for every x ∈ K and θ > 0, θx ∈ K.

• K is a convex cone if for every x1, x2 ∈ K and θ1, θ2 > 0,

θ1x1 + θ2x2 ∈ K.

Proper Cone

A cone K ⊆ Rn is a proper cone if:

• K is convex.

• K is closed.

• intK 6= ∅
• K is pointed ⇔ x ∈ K, −x ∈ K =⇒ x = 0

Proper Cones can be used to define partial orderings on Rn

x 6K y⇔ y− x ∈ K

Examples: R+, Rn
+, S

n
+
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Generalized Monotonicity & Convexity

f : U→ R is K-nondecreasing if x 6K y =⇒ f(x) 6 f(y)

Examples:

• tr(WX), W ∈ Sn is matrix nondecreasing if W > 0, matrix

decreasing if W 6 0.

• tr(X−1) is matrix decreasing on Sn++.

• det(X) is matrix increasing on Sn++.

f : U→ F is K-convex if f(θx+ (1− θ)y) 6K θf(x) + (1− θ)f(y).

If f : U→ Sm then we can deduce that f is matrix-convex using the

equivalent condition that the real valued function zT f(x)z is convex.

• f(X) = XXT is matrix convex.

• f(X) = X2 is matrix convex.

• f(X) = eX is not matrix convex.
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Generalized Constrained Problem

• f0 : Rn → R.

• Ki ⊆ Rki are proper cones.

• fi : Rn → Rki are Ki-convex.

minimize f0(x)

subject to fi(x) 6Ki
0, i = 1, . . . ,m

Ax = b

• Feasible, Sublevel, Optimal Sets are convex.

• Locally optimal point is globally optimal.

• If f0 is differentiable, the usual optimality condition holds.

• Often solved as easily as ordinary convex optimization problems.
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Cone Programs

Cone programs are generalized linear programs.

minimize cTx

subject to Fx+ g 6K 0

Ax = b

Constraint function is affine thus K-convex.

Standard form conic problem:

minimize cTx

subject to x 6K 0

Ax = b
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SOCP

SOCP is a Cone Program.

minimize cTx

subject to − (Aix+ bi, c
T
i x+ di) 6Ki

0, i = 1, . . . ,m

Fx = g

• Ki = {(y, t) ∈ Rni+1 | ‖y‖2 6 t} is a second-order cone in Rni+1.
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Semidefinite Programming

K is the cone of semidefinite k× k matrices, K = Sk+.

minimize cTx

subject to x1F1 + . . .+ xnFn +G 6K 0

Ax = b

• The Constraint is a Linear Matrix Inequality (LMI).

• Is SDP a generalization of LP?
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Multiple LMI Constraints

A SDP can have more than one LMI constraints

minimize cTx

subject to Fi(x) = x1F
i
1 + . . .+ xnF

i
n +Gi 6 0, i = 1, . . . ,m

Ax = b.

We can use the fact that a block diagonal matrix is positive semi-definite

iff all its blocks are positive semi-definite to form a large block diagonal

LMI constraint

diag(F1(x), . . . , Fm(x)) 6 0
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LMIs

The (strict) LMI

F(x) := F0 +
∑

xiFi > 0

is equivalent to a set of n polynomial inequalities since uTF(x)u > 0 for

all u ∈ Rn.

• The solution set of an LMI is convex. Consider the affine map

F0 +
∑
xiFi.

• A set of convex non-linear inequalities can be represented as an

LMI. Let Q(x) = Q(x)T , R(x) = R(x)T and S(x) depend affinely on

x then(
Q(x) S(x)

S(x)T R(x)

)
> 0⇔ R(x)> 0

Q(x) − S(x)R(x)−1S(x)T> 0
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Matrix norm Minimization

Let A(x) = A0 + x1A1 + . . .+ xnAn.

minimize ‖A(x)‖2

‖ · ‖2 is the spectral norm.

Equivalent SDP

minimize t

subject to

(
tI A(x)

AT (x) tI

)
> 0

• Is SDP a generalization of SOCP?

• Should we solve SOCPs with SDP solvers?
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Fastest mixing Markov Chain

In probability theory, the mixing time of a Markov chain is the time until

the Markov chain is ”close” to its steady state distribution.

• G(V, E) is an undirected graph.

• X(t) is the state of the MC.

• Each edge has a probability

Pij = Pr[X(t+ 1) = i | X(t) = j), Pij = 0, if (i, j) /∈ E.

• Pij > 0, 1TP = 1T , P = PT .

• (1/n)1 is an equilibrium distribution of the MC.

• Eigenvalues of P: 1 = λ1 > λ2 > . . . > λn

• Convergence is deteremined by the mixing rate r = max{λ2,−λn}
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Fastest mixing Markov Chain

We want to reach as fast as possible the uniform distribution, thus we

minimize the mixing time r.

minimize r

subject to Pij > 0

1TP = 1T

The equivalent SDP

minimize ‖P − (1/n)11T‖2
subject to Pij > 0

Pij = 0, for (i, j) /∈ E

1TP = 1T
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GW Maxcut

Approximation & SDP

SDP can be solved in polynomial time, up to accuracy ε.

MaxCut Problem

• Undirected graph G = (V, E).

• zi ∈ {−1, 1} corresponds to i-th vertex.

• A cut (S, V \ S), where S = {i ∈ V : zi = 1}.

maximize
∑

(i,j)∈E

1− zizj
2

subject to zi ∈ {−1, 1}, i = 1, . . . , n
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SDP Relaxation

We replace the real variables zi with vectors ui ∈ Sn−1.

maximize
∑

(i,j)∈E

1− uT
i uj

2

subject to ui ∈ Sn−1, i = 1, . . . , n

Equivalent Problem:

maximize
∑

(i,j)∈E

1− xij
2

subject to xii = 1, i = 1, 2, . . . , n

X > 0
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Rounding the Vector Solution

Chose randomly p ∈ Sn−1 and consider the mapping

u 7→

{
1, if pTu > 0,

−1, otherwise.

The probability that this rounding maps u and u ′ to different values is

arccosuTu′

π
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Getting the Bound

The Expected Number of edges in the resulting cut equals

∑
(i,j)∈E

arccos(u∗i
Tu∗j )

π

We know that ∑
(i,j)∈E

1− u∗i
Tu∗j

2
> Opt(G) − ε

It holds that
arccos(z)

π
> 0.87856

1− z

2
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Vector Optimization



Dual Inequalities

Dual Cone

Let X be a vector space and X∗ be its dual

• If K ⊆ X is a cone then its dual cone is the set

K∗ = {y ∈ X∗ | yTx > 0, for all x ∈ K}

• (Rn
+)
∗ = Rn

+

• (Sn+)
∗ = Sn+

• K∗ is always convex.

• K proper =⇒ K∗ proper.
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Minimal Elements

Dual Inequalities

x 6K y⇔ λTx 6 λTy for all λ >K∗ 0.

Minimum Element

x is minimum in S⇔ for all λ >K∗ 0, x is the unique minimizer of λTz

over z ∈ S⇔ The hyperplane {z | λT (z− x) = 0} is a strict supporting

hyperplane to S at x for all λ ∈ K∗.

Minimal Elements

• If λT >K∗ 0 and x minimizes λTz over z ∈ S, then x is minimal.

• If S is convex, for any minimal element x there exists nonzero

λ >K∗ 0 s.t. x minimizes λTz over z ∈ S.
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Counterexamples
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Convex Vector Optimization Problem

Let f0 : Rn → Rq, K ⊆ Rq a proper cone.

minimize (with respect to K) f0(x)

subject to fi(x) 6 0

hi(x) = 0

• f0 is K-convex.

• fi are convex.

• hi are affine.

A point x∗ is optimal iff it is feasible and

f0(D) ⊆ f0(x∗) + K
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Scalarization

Pareto Optimal Points

• A point x is Pareto optimal iff it is feasible and

(f0(x) − K) ∩ f0(D) = {f0(x)}

• The set of Pareto optimal values, P satisfies P ⊆ f0(D) ∩ ∂f0(D)

Scalarization

Let λ >K∗ 0 be the weight vector.

minimize λT f0(x)

subject to fi(x) 6 0

hi(x) = 0

If the problem is convex then every pareto optimal point is attainable via

scalarization.
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Minimal Matrix Upper Bound

minimize (w.r.t Sn+) X

subject to X > Ai, i = 1, . . . ,m

Let W ∈ Sn++ and form the equivalent SDP

minimize (w.r.t Sn+) tr(WX)

subject to X > Ai, i = 1, . . . ,m

Ellipsoids and Positive Definiteness

EA = {u | uTA−1u 6 1}

A 6 B⇔ EA ⊆ EB
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Duality



Langrangian

Langrangian

L : Rn × Rm × Rp → R, with domL = D× Rm × Rp.

L(x, λ, µ) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

µihi(x)

Dual function

g : Rm × Rp → R
g(λ, µ) = inf

x∈D
L(x, λ, µ)

Dual function for λ > 0 underestimates the optimal value g(λ, µ) 6 p∗.
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Multicriterion Interpretation

Primal Problem without equality constraints:

minimize f0(x)

subject to fi(x) 6 0, i = 1, . . . ,m

Scalarization of the multicreterion problem:

minimize F(x) = (f0(x), f1(x), . . . , fm(x))

Take λ̃ = (1, λ) and then minimize

λ̃TF(x) = f0(x) +

m∑
i=1

λifi(x)

which is the Langrangian of the Primal Problem.
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Nonconvex QCQP

Let A ∈ Sn, A � 0, b ∈ Rn.

maximize xTAx+ 2bTx

subject to xTx 6 1

Langrangian:

L(x, λ) = xTAx+ 2bTx+ λ(xTx− 1) = xT (A+ λI)x+ 2bTx− λ

Dual Function:

g(λ) =

{
−bT (A+ λI)†b− λ, A+ λI > 0, b ∈ R(A+ λI)

−∞ otherwise
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Nonconvex QCQP

Dual Problem

maximize − bT (A+ λI)†b− λ

subject to A+ λI > 0, b ∈ R(A+ λI)

We can find an equivalent concave problem

maximize −

n∑
i=1

(qTi b)
2

λi + λ
− λ

subject to λ > −λmin(A)

For these problems strong duality obtains.
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Rayleigh Quotient

Let A ∈ Sn

maximize
xTAx

xTx

Equivalent problem:

maximize xTAx

subject to xTx 6 1

Lagrangian: L(x, µ) = xTAx+ λ(xTx− 1)
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Derivative

Let E, F be Banach Spaces, that is complete normed spaces.

Derivative is a Linear Map

Let U be open in E, and let x ∈ U. Let f : U→ F be a map. f is

differentiable at x if there exists a continuous linear map λ : E→ F and a

map ψ defined for all sufficiently small h in E, with values in F, such that

lim
h→0

ψ(h) = 0, and f(x+ h) = f(x) + λ(h) + |h|ψ(h).
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log(det(X))

f(X) : Sn++ → R, f(X) = log det(X)

log det(X+H) = log det(X+H)

= log det
(
X1/2(I+ X−1/2HX−1/2)X1/2

)
= log detX+ log det(I+ X−1/2HX−1/2)

= log detX+

n∑
i=1

log(1+ λi)

' log detX+

n∑
i=1

λi

= log detX+ tr(X−1/2HX−1/2)

= log detX+ tr(X−1H)

∇f(X) = X−1
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Conjugate of logdet

Conjugate function:

f∗(y) = sup
x∈D

(yTx− f(x))

f(X) = log detX−1, X ∈ Sn++

The conjugate of f is

f∗(Y) = sup
X>0

(tr(YX) + log detX)

• tr(YX) + log detX is unbounded if Y � 0.

• If Y < 0 then setting the gradient with respect to X to zero yields

X0 = −Y−1

f∗(Y) = log det(−Y)−1 − n = − log det(−Y) − n

dom f∗ = −Sn++
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Dual of Affine Constraints

minimize f0(x)

subject to Ax 6 b

Cx = d

g(λ, µ) = inf
x
(f0(x) + λ

T (Ax− b) + µT (Cx− d))

= −bTλ− dTµ+ inf
x
(f0(x) + (ATλ− CTµ))

= −bTλ− dTµ− f∗0(−A
Tλ− CTµ)

with domg = {(λ, µ) | −ATλ− CTµ ∈ domf∗0}
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Minimum Volume Covering Ellipsoid

Primal

minimize f0(X) = log det(X−1)

subject to aTi Xai 6 1, i = 1, . . . ,m

aTi Xai ⇔ tr(aia
T
i X) 6 1

Dual Function

g(λ, v) =

{
log det

(∑m
i=1 λiaia

T
i

)
− 1Tλ+ n,

∑m
i=1 λiaia

T
i > 0

−∞, otherwise

Dual

minimize log det

(
m∑
i=1

λiaia
T
i

)
− 1Tλ+ n

subject to λ > 0

The weaker Slater condition is satisfied (∃X ∈ Sn++, a
T
i Xai 6 1, i ∈ [m])

and therefore Strong Duality obtains.
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The Perturbed Problem

The perturbed version of the convex problem:

minimize f0(x)

subject to fi(x) 6 ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , p

The optimal value:

p∗(u, v) = inf{f0(x) | ∃x ∈ D, fi(x) 6 ui, hi(x) = vi}

• The optimal value of the unperturbed problem is p∗(0, 0) = p∗

• When the perturbations result in infeasibility we have p∗(u, v) =∞.

• p∗(u, v) is convex when the original problem is convex.
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A Global Inequality

Assume that the original problem is convex and Slater’s condition is

satisfied.

Let (λ∗, µ∗) be optimal for the dual of the original problem. Then

p∗(u, v) > p∗(0, 0) − λ∗Tu− µ∗Tv

Proof.

p∗(0, 0) = g(λ∗, µ∗)

6 f0(x) +
m∑
i=1

λ∗i fi(x) +

p∑
i=1

µ∗ihi(x)

6 f0(x) + λ
∗Tu+ µ∗Tv
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Interpretation of the Global Inequality

p∗(u, v) > p∗(0, 0) − λ∗Tu− µ∗Tv

• λ∗i is large, ui < 0 then p∗(u, v) will increase greatly.

• µ∗i is large and positive, vi < 0 OR µ∗i is large and negative, vi > 0

then p∗(u, v) will increase greatly.

• If λ∗i is small, ui > 0 then p∗(u, v) will not decrease too much.

• If µ∗i is small and positive ,vi > 0 OR µ∗i is small and negative and

vi < 0

then p∗(u, v) will not decrease too much.

These results are not symmetric with respect to tightening or loosening

a constraint.
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Local Sensitivity Analysis

Assume strong duality and differentiability of p∗(u, v) at (0, 0).

λ∗i = −
∂p∗

∂ui

∣∣∣∣
(0,0)

, µ∗i = −
∂p∗

∂vi

∣∣∣∣
(0,0)

Differentiability of p∗ allows a symmetric sensitivity result.

Proof.

∂p∗

∂ui

∣∣∣∣
(0,0)

= lim
t→0

p∗(tei, 0) − p
∗(0, 0)

t

From the global inequality we have

p(u, v) − p∗(0, 0)

t
> −λi if t > 0 and

p(u, v) − p∗(0, 0)

t
6 −λi if t < 0
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Duality in SDP

Primal SDP:

minimize cTx

subject to x1F1 + . . .+ xnFn +G 6 0

Then

L(x, Z) = cTx+ tr((x1F1 + . . .+ xnFn +G)Z)

= x1(c1 + tr(F1Z)) + . . .+ xn(cn + tr(FnZ)) + tr(GZ)

Dual function:

g(Z) = inf
x
L(x, Z) =

{
tr(GZ), tr(FiZ) + ci = 0, i = 1, . . . , n

−∞, otherwise
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Duality in SDP

Dual Problem:

minimize tr(GZ)

subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z > 0

Strong Duality obtains if the SDP is strictly feasible, namely there exists

an x with

x1F1 + . . .+ xnFn +G < 0
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Questions?
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